
Eden model on the Manhattan lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 L449

(http://iopscience.iop.org/0305-4470/18/8/009)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 09:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 18 (1985) L449-LQ56. Printed in Great Britain 

LETTER TO THE EDITOR 

Eden model on the Manhattan lattice 

A Chernoutsant and S MiloSevii. 
Department of Physics and Meteorology, Faculty of Natural and Mathematical Sciences, 
Belgrade, Yugoslavia 

Received 11 March 1985 

Abstract. We study the Eden growth model on the square Manhattan lattice (SML).  For 
this purpose it has been necessary to extend the standard Eden model in such a way that 
each act of growing is conceived as a directional process. By applying the postition space 
renormalisation group technique, we find that the Eden processes on the S M L  and on the 
ordinary square lattice are in different universality classes. This finding and corresponding 
fractal dimensions are compared with results obtained for similar models of irreversible 
kinetic processes. 

There has been vigorous interest in the physical description of the structure of aggre- 
gates, or clusters, formed by irreversible kinetic processes. The latter include processes, 
such as gelation and coagulation, which are relevant to various physical, chemical, 
biological and technological phenomena. It has been concluded (see, for example, 
Stanley 1983) that objects (aggregates) formed by these processes may have scale 
invariant structures and can be described as fractals (Mandelbrot 1982). It means that 
the number of units (particles) N of an aggregate and its mean square radius ( R L )  
are asymptotically (for large N )  related by 

N~ - ( R :r)D (1) 

where D is the Hausdorff or fractal dimension of the aggregate. If D is less than the 
spatial dimension d, the aggregates are ramified, whereas for D = d they are termed 
compact. For a growing process D is its statistical quality. That is to say, in the 
corresponding ensemble of aggregates, a needle-like cluster and a compact ball may 
appear, but the shape of the largest number of clusters should be in accord with D 
that is characteristic of the particular growing process. Thus D has been used to 
classify the growth models of randomly formed aggregates into appropriate universality 
classes (see, for example, Gould et al 1983, Green 1984). 

In this letter we study the Eden growth model (Eden 1961), where cluster growth 
is effected in a simple way, by adding particles at random, with uniform probability, 
on the boundary of the cluster. If the particles are to occupy sites of a lattice, clusters 
formed in the Eden process look like growing animals (Nakanishi and Family 1984). 
The numerical simulation (for d = 2,3) of the aggregation process (Peters er a1 1979) 
has shown that the fractal dimension of the Eden aggregates is equal to the spatial (or 
embedding) dimension d. This implies that the aggregates have, on average, a very 
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compact structure. The result is plausible, since all interior vacant patches in a cluster 
will eventually be smeared, as their perimeter sites will sooner or later be chosen for 
occupation. However, although one may be tempted to accept the numerical finding 
for arbitrary d, Parisi and Zhang (1984) have shown that in the limit when d tends to 
infinity, ( R k )  shows asymptotic behaviour which is not consistent with the compact- 
clusters picture. Their result seems to agree with the results of Vannimenus et aZ(1984), 
who have studied the Eden model on the Cayley tree. On the other hand, the 
position space renormalisation group ( PSRG) approach of Gould et a1 (1983) gave 
quite good results for the diffusion-limited aggregation ( DLA) model proposed by 
Witten and Sander (1981), but for the Eden model it failed to provide D close enough 
to d (when d = 2,3). Taken together these facts suggest that the Eden model is not 
as simple as it appeared to be, and hence it deserves further investigations. 

The particular question that we seek to answer concerns the universality classes of 
the Eden model on the ordinary square lattice and on the square Manhattan lattice. 
We shall use the PSRG method. This method has been applied to the problem of the 
universality classes of the DLA growth models and their equilibrium counterparts 
(Gould et a1 1983, Green 1984). However, the problem we are concerned with is in 
fact the search of the dynamic universality classes, since we are going to investigate 
the single growth process on two different substrata. To this end, we shall use the 
PSRG technique introduced by Prentis (1984), and elaborated by Malakis (1984), for 
the self-avoiding-walks (SAW) problem. Within the accepted framework we shall reach 
the conclusion that the Eden aggregates on the ordinary square lattice and on the 
square Manhattan lattice are in different universality classes. This result is proposed 
for discussion. 

The square Manhattan lattice ( S M L )  is a two-dimensional oriented square lattice 
(see figure I ) ,  whose network of bonds resembles the traffic scheme of Manhattan 
downtown. On a large scale, the S M L  is an isotropic system. However, in order to 
place the Eden growth process on the SML,  we have to extend the Eden model in such 
a way that each act of growth should be directed along a single bond that connects 
the new particle with a particle contained in the aggregate perimeter. For example, 
the four-particle aggregate (see figure 2 ( a ) )  can be uniquely grown out of the three- 
particle cluster 1-2-3, in the case of the standard Eden model. On the other hand, in 
the case of the extended Eden model, the four-particle cluster can be formed out of 
the 1-2-3 cluster, either by adding the fourth particle along the bond that links it with 
the second particle, or along the bond that links it with the third particle (see figure 
2 ( 6 ) ) .  Hence, in the ensemble of clusters pertinent to the extended Eden model, the 
four-particle cluster should be counted twice. Before continuing with the technical 
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Figure 2. ( a )  According to the standard Eden model the fourth particle can join the 
preceding three in a single way. ( b )  The extended Eden model allows of the two ways of 
aggregating the fourth particle. 

details, we point out that the extended Eden model, in comparison with the standard 
model should be more relevant to those real processes in which the probability of 
appearance of a new element in the aggregate is larger at those places where there 
exist more contacts with already aggregated elements. Such is the process of the 
spreading of a fire in a forest, or of diseases in a orchard. 

If the two Eden models (standard and extended) are placed on the ordinary square 
lattice, one can expect to see growing of aggregates characterised by the same fractal 
dimension D = 2. Indeed, accepting the numerical finding (Peters et al 1979) that the 
aggregates of the standard Eden model should be conipact ( D  = d ) ,  one can provide 
a qualitative argument that the aggregates of the extended Eden model cannot be less 
compact. The argument stems from the fact that unoccupied sites close to the border 
of an interior vacant patch in the aggregate have, on average, more already aggregated 
neighbours than sites close to the circumference of the cluster; therefore the vacant 
patches of the aggregates grown in the extended Eden process should more rapidly 
vanish than those which appear within the aggregates grown in the standard Eden 
process. We support this argument by a one-parameter PSRG analysis of the type 
suggested by Gould er al (1983). These authors place a particle at an initial seed site 
and allow the cluster to grow only eastwards and northwards, associating a weight, or 
fugacity, K with each occupied site in the cluster. Next, a rescaling of the lattice is 
performed via the cell-to-site mapping, which means that the lattice is divided into 
cells of linear dimension b and the cells are rescaled to single site, with the correspond- 
ing fugacity K ’. Finally, the renormalisation group ( RG) transformation is introduced 

K ’ =  R ( K )  (2) 
where R( K )  includes all the spanning configurations that can be grown from the initial 
seed site. The fractal dimension D is given by 

D = In A,/ln b (3) 

where AK is the eigenvalue, A K  = (dK’/dK),=&, of the transformation, with K, being 
its critical fixed point (Stanley et a1 1982). Thereby, in the case of the extended Eden 
model, we find (for b = 2) the following RG equation 

K ’  = 4 K 3 +  8K4 (4) 
which gives K, = 0.377 and D = 1.778. These values should be compared with the 
results K ,  = 0.420 and D = 1.721, obtained for the standard Eden model (Gould er al 
1983), whereupon one can see that the clusters of the extended Eden model cannot 
be less compact than the clusters of the standard Eden model. To support this 
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conclusion, and for the sake of a later analysis, we give here the RG equation for the 
extended Eden model 

K’ = 22K5 + 3 1 8 K 6  + 2128 K 7  + 7748K’ + 17 528 K 9  (5) 

in the case b = 3. The latter equation gives K, = 0.231 and D = 1.7991, which should 
be compared with the values K, = 0.279 and D = 1.729, found for the standard Eden 
model (Gould ef a1 1983). 

Now we place the extended Eden model on the SML;  henceforth we refer to the 
model, whenever it does not cause any ambiguity, just as the Eden model. We first 
perform the one-parameter PSRG analysis of the type described in the preceding 
paragraph, allowing that each act of growth occurs only in the direction of the lattice 
bond that connects two neighbouring sites. The problem to be solved concerns the 
four types of cells that appear on the SML when b = 3. In the case of the SAW on the 
same lattice (Prentis 1984, Malakis 1984) it is reasonable to study the ensemble of SAW 

which are upward oriented, and thus only two types of cells are relevant in the 
corresponding cell-to-bond mapping. Furthermore, if one uses the ‘equal averaging’ 
rule instead of the ‘corner rule’ (see, for example, Redner and Reynolds 1981), the 
resulting RG transformations appear to be the same for both cells. However, in the 
case of the Eden model, with the accompanied cell-to-site mapping, there is no 
possibility of getting a unique transformation for the four different cells. Therefore, 
we resort to the arithmetic mean 

K’ = $( 16K + 66K + 162K’ + 292K + 376K ’) (6) 

which gives K ,  = 0.434 and D = 1.7596. The latter value differs from D = 1.7991 found 
for the extended Eden model on the ordinary square lattice. Yet, because of the 
approximate nature of the PSRG technique, the observed difference does not automati- 
cally imply that the Eden aggregates on the SML and on the ordinary square lattice 
are in different universality classes. 

To resolve the problem of the universality classes of the Eden aggregates we next 
apply the two-parameter PSRG technique introduced by Prentis (1984). Following 
Prentis (1984) and Malakis (1984), we allow that an act (step) of growth on the S M L  

may violate the underlying bond direction with a probability ( 1  -p) .  Accordingly, a 
step of growth obeying the bond direction may be performed with the probability p .  
Within the PSRG approach, we regard these probabilities as appropriate weights of 
acts of growing a cluster, while the parameter K (fugacity) remains the weight of each 
particle in the cluster. Hence, for example, the weight of a 1-site cluster is K $ ” (  1 - P ) ~  
if the cluster has been grown through s steps that obey the underlying orientations of 
the bonds and through r steps that violate the underlying orientations, so that s + r = 
1 - 1 .  As regards the introduced cluster weight there are two immediate comments. 
First, the weighting of clusters (on the SML)  is unambiguous due to the accepted 
extension of the Eden model. Second, the above-mentioned weighting differs from 
the weighting used in dealing with the SAW problem (Prentis 1984), where each 
self-avoiding-walk step is weighted either by the product pK (if the step obeys the 
underlying orientation of the bond) or by (1-p)K (in the opposite case). This 
difference springs from the twofold nature of the Eden model, as it brings on both a 
site problem, in which essential objects are clusters of occupied sites, and the problem 
of a kinetic process, where the growth of clusters occurs via bonds of the underlying 
lattice. 
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Changing the parameter p from 1 to 0.5 (or from 0 to 0.5) transforms the underlying 
lattice from the SML (from the anti-Manhattan lattice) to the ordinary square lattice. 
The studied problem should be symmetrical with respect to the choice of the probability 
parameter ( p  or q = 1 - p )  and so should be the corresponding RG transformations. 
To introduce the renormalised probability p ’  and the renormalised fugacity K‘ we look 
at two rescaled sites which are linked with a rescaled bond, and assign to the bond 
an orientation that is determined by a majority rule. Specifically, in the case displayed 
in figure 3, we assume that the growth from the rescaled site A to the rescaled site C 

Figure 3. Rescaling of the SML by forming cells out of groups of sites and by renormalising 
the bond orientations according to majority rule. 

obeys the underlying direction of the rescaled bond (and occurs with the probability 
p ’ ) ,  whereas the growth from A to B violates (with the probability 1 - p ’ )  the relevant 
bond direction. Thus, we form the corresponding RG equations 

where FA, FB and Fc are the total weights of all spanning clusters that can be grown 
on the cells A, B, and C respectively. The prefactor p and similarly 1 - p  on the 
right-hand side of equations (7) and (8) respectively correspond to the possibility of 
growing a cluster on cell C or cell B respectively from a cluster on the cell A. By 
enumerating all possible clusters we have found the following explicit expressions ; 

+ K 7 ( 2 5 ~ 6 + 2 0 9 ~ S y + 5 1 0 ~ 4 y 2 + 6 4 0 ~ 3 y 3 +  510x2y4+209xy5+25y6) 

+ K8(29x7+354x6y+ 1326x5y2+2165x4y3+2165x3y4+ 1 3 2 6 ~ ’ ~ ’  

+354xy6+ 29y7) 

+ K9(274x7y + 1824x6y2 + 4072x5y3 + 5188x4y4 

+ 4072x3y5 + 1824x2y6+ 274xy7), (9) 
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F,(K, x, y )  = ~ 5 ( 8 ~ 4 +  i0x2~2+4xy3) 

+ K6(34xS + 60x4y + 132x3y2 + 80x2y3 + 12xy4) 

+ K 7 (  1 12x6 + 344x5y + 694x4y2 + 720x3y3 + 238x2y4+ 2Oxy’) 

+ K8(234x7+ 838x6y + 1902x5y2+2716x4y3+ 1686x3y4 

+ 352x2y5 + 20xy6) 

+ K9(376x8+ 1492x7y+3512x6y2+ 5408x5y3+4748x4y4 

+ 1792x3y5 + 200x2y6) (10) 

One should notice that the RG transformations (7)  and (8), with FA, FB and Fc 
given by (9), (10) and ( l l ) ,  are invariant to the interchanging p * ( l  - p ) ,  and p r -  
(1 - p r ) ,  which implies that the RG transformations preserve the symmetry between the 
Eden growth processes on the S M L  and on the anti-Manhattan square lattice. Further- 
more, one can also define FD as the total weight of all possible clusters on the cell D 
(see figure 3), and verify that FD( K ,  x, y )  = F,(K,  x, y ) .  Thereby one can vindicate 
that the growth process, on the rescaled lattice, from D to B (northwards) and from 
D to C (eastwards) would bring about the same RG transformations (7) and (8). As 
for the three limiting cases ( p  = 0,0.5,1) one can check that setting p = 0.5 in equations 
(7) and (8) implies p r = 0 . 5  and retrieves equation ( 5 )  with the transformed fugacity 
i K .  On the other hand, setting p = 1 (or p = 0) in equations (7) and (8) leads to 
p ’ =  l (p’=O) and 

K ” = F A ( K ,  l,O)Fc(K, 1 , O )  (12) 

which shows that, in this particular case, the renormalised fugacity is the geometric 
mean of the cell weights. Therefore, the limiting cases should form three fixed points 
of the RG transformations (7) and (8). The points are determined by p = 0.5 and 
p = 1(0), and by the solutions of the corresponding equations (5)  and (12). 

The complete renormalisation mapping governed by equations ( 7 )  and (8) is 
depicted in figure 4. It reveals three non-trivial fixed points. They lie on the critical 
manifold, which is illustrated by the full curve in figure 4. The pair of fixed points 
located at ( K ,  p )  = (0.4137,l) and at ( K ,  p )  = (0.4137,O) correspond to the Eden growth 
processes on the SML and on the anti-Manhattan square lattice respectively. The third 
fixed point ( iK ,  p )  = (0.231,0.5) correspond to the Eden growth process on the ordinary 
square lattice. Hence, the flow diagram discloses that the latter process does not belong 
to the universality class of the former two. This is indicated by the findings for the 
fractal dimensions of the corresponding aggregates ( D  = 1.7991 versus D = 1.7302), 
and above all by the fact that the point ( iK ,  p )  = (0.231,0.5) is the most unstable fixed 
point, with the relevant eigenvalues A K  = 7.2179 and A, = 8.0168. To verify this result, 
we have tried several modifications of the RG transformations, stipulating that they 
should be compatible with the character and symmetry of the problem. For example, 
one could argue that the clusters on the cells A and C should be linked with the 
probability ( p +  1)/3, and for this reason the prefactor on the right-hand side of 
equation (7) should be ( p  + 1) /3  rather than p .  However, in all such modifications the 
essential character of the flow diagram (see figure 4) remain unchanged, and on these 
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Figure 4. Flow diagram generated by the renormalisation group transformations (7)  and 
(8). The points on the critical manifold (full curve) flow into the fixed points (0) on the 
p = I and p = 0 lines, and not to the central fixed point p = $. The trivial fixed points (0) 
are also shown. 

grounds we may conclude that the Eden aggregates on the ordinary square lattice and 
on the S M L  are in different universality classes. 

In this letter we have contrasted the Eden growth processes on the ordinary square 
lattice and on the square Manhattan lattice (SML).  For this purpose we had to extend 
the standard Eden model in such a way that each act of growth should occur via a 
single lattice bond. Consequently, the extended model can be studied on both types 
of lattices. Applying the PSRG technique (Gould et a1 1983) we have first compared 
the two versions of the model on the ordinary square lattice. In this case, our results 
show that the fractal dimension D E E  of the extended Eden model should not be smaller 
than the fractal dimension DE of the standard Eden model. Thus, we can put forward 
the inequality D E  2, which may be provocative to those who are trying to 
provide an exact proof for the numerical finding DE = 2 (Peters et al 1979). 

Our second comparison consisted in studying universality classes of the extended 
Eden model on the SML and on the ordinary square lattice. We have shown that there 
are two different universality classes, and thereby there may be two different fractal 
dimensions, one ( D E M )  for the Eden aggregates on the SML and the other ( D E E )  for 
the aggregates on the ordinary square lattice. The obtained results suggest the inequality 
D E M  < D E E  which provokes our intuition. Indeed, the SML is a totally connected lattice 
(any site can be reached from any other site), and one cannot easily see why the Eden 
aggregates on the SML should be less compact than the corresponding aggregates on 
the ordinary square lattice. However, it seems very likely that the initial preference 
of two directions of growing (instead of four), found by the seed particle placed on 
a site of the SML and retained partially in the further growing, acts like the tip priority 
factor R in the case of the electrical breakdown model introduced by Sawada et a1 
(1982). These authors modified the Eden model so that, instead of weighting all the 
perimeter sites equally, they allowed the perimeter sites on the tip of the growing 
cluster to have an increased probability (parametrised by R )  of being occupied. For 
sufficiently large R the computer simulation (Sawada et a1 1982) confirmed that the 
corresponding aggregates have a fractal dimension Ds definitely less than the spatial 

D E E  
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dimension ( d  = 2), and hence one may write D, < DEE, which is analogous to the 
preceding inequality, i.e. DEM < DEE. 

At the end, we would like to comment on the RG scheme (Gould et a1 1983, Green 
1984) which has been adopted in this letter. We do acknowledge the observation that 
this scheme is not yet quantitatively reliable (Vannimenus et af 1984), and we do not 
claim that the found values of the fractal dimensions are firmly established. However, 
we assert that the qualitative results which concern relations between the universality 
classes (and relations between the fractal dimensions) are plausible, and we expect 
them to be vindicated by further approaches. With regard to the question of a proper 
generating function within the RG approach (Nakanishi and Family 1984), we have 
tacitly assumed the grand canonical representation of the type outlined by Prentis 
(1984) (with 2, being the total number of N-site aggregates). We could not accept 
the generating function proposed by Nakanishi and Family (1984) as we did not find 
it amenable to the two-parameter PSRG technique, particularly because it elicited 
somewhat discouraging results in the case of the standard Eden model (Nakanishi 
and Family 1984). Of course, there is a danger that, within the grand caonical 
representation, the critical fugacity may be equal to zero (because of very large Z,), 
but even if it were the case it should be possible, by dealing with finite clusters (finite 
N ) ,  to establish correct qualitative results. In short, because of these methodological 
questions we challenge a computer simulation of the Eden model on the SML. Such 
a study, to our knowledge, has not yet been undertaken, and it should not be more 
difficult than the similar study of the Eden model (Peters et a1 1979) on the ordinary 
square lattice. 

One of us (AC) wishes to thank the Department of Physics and Meteorology, University 
of Belgrade, for the stimulating atmosphere and hospitality. The other (SM) is most 
grateful to Professor H E Stanley for many useful references and reprints. 

Note added in proof: We are grateful to Professor J Vannimenus who kindly drew our attention to the fact 
that the standard Eden model should be termed the ‘Eden model for physicists’, whereas the extended Eden 
model coincides with the original Eden model (Eden 1961). 
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